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A discussion is presented regarding the significance of the spatial temperature 
gradient approximation normally Used in thermal conductivity measurement. 
Examples are presented illustrating the magnitude of temperature differences 
allowed for conductivity integral (TCI) method of analysis is presented as an 
alternative method which totally eliminates the need to impose temperature 
difference restrictions on the measurement process, so long as other errors, such 
as radiative heat losses, do not become excessive. 

KEY WORDS: Thermal conductance; thermal conductivity; thermal conduc- 
tivity integral. 

1. I N T R O D U C T I O N  

Thermal  conductivity,  k ( T ) ,  is a temperature dependent  property of a 
homogeneous  material defined in terms of heat transfer through and the 
temperature gradient within a specimen of the material. The definition for 
unidirectional heat  flow (planar isotherms) is given by  

Q = - k ( T ) A ( d T / d x )  or k ( T ) = - Q ( A d T / d x )  - l  (1) 

where Q is the heat  transfer per unit time, through cross-sectional area, A, 
and d T / d x  is the temperature gradient in the direction of heat transfer. 
The negative sign simply indicates that the heat transfer direction is 
opposite to that of the temperature gradient. The one-dimensional  case is 
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used here for simplicity. However, this analysis can readily be extended to 
other simple heat transfer geometries, such as the radial or spherical cases. 

The commonly used experimental or operational definition of thermal 
conductivity, k0(T ), for this case, is 

ko(T ) = - Q(Ax/AAT) (2) 

where Ax is the length of the specimen across which the temperature 
difference, A T = T 2 - T l, occurs, and the temperature to which this obser- 
vation is usually assigned is T =  (T 2 + T1)/2. This measured value, k0(T ), 
is normally taken to be the true thermal conductivity of the specimen at the 
mean temperature, i.e., k(T). This, of course, is an approximation of the 
true conductivity, k(T), since (dT/dx)-1 has been replaced by Ax/AT. As 
AT approaches zero, Ax/_AT approaches (_dT/dx)-1 and, in the absence of 
experimental errors, ko( T ) approaches k( T). 

Most experimenters take great pains, often at the expense of accurate 
AT values, to utilize very small temperature differences to assure that the 
above derivative approximation is valid. This approach is essential when 
thermal conductivity is a strong function of temperature and especially 
when one is working near a phase transition where thermal conductivity 
may be discontinuous with temperature. One objective of this paper is to 
show that in all other cases, which include most measurements reported in 
the literature, small temperature differences are not essential for highly 
accurate results. 

The objectives of this paper are (1) to show that relatively large 
temperature differences may be used experimentally, in most cases, Without 
incurring excessively large errors, and (2) to describe a thermal conductivity 
integral (TCI) method, which totally obviates the need for restrictions on 
the size of experimental temperature differences. It should be noted that 
consideration is given only to the analytical aspects of the measurement 
process and not various experimental errors which may occur simulta- 
neously. For example, it is not claimed that this method will account for 
the errors caused by stray heat losses, such as radiative heat transfer. These 
losses may, in fact, increase in a relative sense as excessively large tempera- 
ture differences are used. 

2. E R R O R S  C A U S E D  BY T H E  D E R I V A T I V E  A P P R O X I M A T I O N  

The following discussion assumes the existence of a unique tempera- 
ture dependent function, k(T), describing the thermal conductivity of a 
specimen. The temperature average of this function from T 1 to T 2 is 
denoted as/~(T2, T1). 
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For convenient calculations of the derivative approximation errors, the 
following derivation will show that the operational definition, Eq. (2), is 
equal to the temperature average of the true thermal conductivity from T 1 

to T 2,/7(T2, T1), and not the conductivity at the average temperature, k(T), 
as normally assumed. Note that k(T2, T1) is simply the mathematical 
definition of the average value of k ( T )  from T 1 to T 2, as given by 

;TT2k(T)dT/2 dT 

Proof: Integrating Eq. (1) with respect to temperature and assuming 
that Q and A are independent of x and T, one obtains 

r 2 k ( T ) d T  = - Q A x / A  (3) 

Dividing both sides of Eq. (3) by f ~ d T ,  to form the mathematical 
definition of the average, yields 

/7(T2, r l )  = - Q ( A x / A T ) / A  (4) 

Note that the right side of Eq. (4) is the definition of k0(T) and, therefore, 
/7(T 2, r 0 = k0(T), and in general, these are not equal to k(T). Thus, the 
error caused by the derivative approximation, k(T) - K0(T), is equal to the 
difference between t2(T2, T1) and k(T). The relative error caused by 
the derivative approximation is 

% error = [ ]7(T2, T,) - k ( T ) ]  l O 0 / k ( T )  (5) 

In this section, several cases will be analyzed to illustrate the magni- 
tude of the error caused by using the operational equation to estimate 
the true thermal conductivity. In each case, Eq. (5) will be used to esti- 
mate the errors. Prior to looking at specific materials, two special cases, 
k = a and k ( T )  = a + bT, where a and b are constants, will be considered. 

2.1. Special  Cases 

The first special case is for a thermal conductivity that is constant, i.e., 
independent of temperature, k = a. Referring to Eq. (5), we see that there is 
no error in the operational definition, since both /7(T2, Tt) and k(T)  are 
equal to " a "  for all temperatures. 

The second case is for a thermal conductivity which varies linearly 
with temperatures from T 1 to T 2, i.e., k = a + bT. Referring to Eq. (5), we 
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again see that the operational definition is perfectly valid, since 

/7(r~, r,)= (T~(a + b T ) d T /  (T2dT= a + bT= k(T)  
J T  t aTt 

For higher order thermal conductivity equations, values of /~(T2, T1) 
and/7(T) are not generally equal, and the operational definition is incorrect 
except in the limit as A T approaches zero. The above results are not trivial, 
however, since for certain temperature ranges, the thermal conductivity of 
many materials approximate either a constant or linear temperature depen- 
dence. For example, the thermal conductivities of most amorphous di- 
electrics and metallic alloys vary approximately linearly from cryogenic to 
high temperatures. Pure metals at very tow temperatures often approximate 
linear behavior while at high temperatures they vary quite slowly with 
temperature. Next, the experimentally determined functional form of k(T) 
for several real materials will be analyzed to further illustrate these points. 

2.2. Iron 

Figure 1 illustrates the thermal conductivity of a moderately pure iron, 
exhibiting the usual linear behavior at very low temperatures, the peak at 

Y 

E 

>. 
I "  
i 

m 

I -  
0 

Q 
Z 
0 

. l  
< 
~E 
m 
m 
..I- 
I -  

lO00. . , , l+ l  I , t r ,~,~+ I , ~ , +,:rl I 

100 ~ M  734 

I I 

10 100 1000 

TEMPERATURE,  K 

Fig. 1. Thermal conductivity of electrolytic iron, SRM 734, and of austenitic stainless steel, 
SRM 735. 
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Fig. 2. Maximum temperature differences allowed in a thermal conductivity experiment upon 
SRM 734 for various error limits caused by errors in the temperature gradient approximation. 
The upper limits, indicated by dashed lines, are caused by the limits of validity of the 
equation, 4 to 1000 K. 

intermediate temperatures, and the decrease to a slowly varying function at 
high temperatures. The k(T) function used here is for electrolytic iron, 
SRM 734, from 4 to 1000 K [1]. From the empirically determined thermal 
conductivity function of this SRM, values of /~(Tz, T1) and k (T )  were 
calculated for various values of T 2 and T1, yielding the percentage errors 
according to Eq. (5). From these calculated values, maximum values of 
AT = T 2 - T 1 were obtained for error limits of 0.5, 1.0, and 2.0%. The 
resulting lines of constant error are plotted in Fig. 2 and illustrate 
that comparatively large temperature differences are experimentally valid, 
even for the 0.5% error band, which is near state-of-the-art measurement 
capability. 

2.3. Steel 

Figure 1 also illustrates the thermal conductivity of the second exam- 
ple, a stainless steel exhibiting a lower order temperature dependence, 
which is typical of alloys and impure dielectrics. The k(T) function used is 
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Fig. 3. Maximum temperature differences allowed in a thermal conductivity experiment upon 
SRM 735 for various error limits caused by errors in the temperature gradient approximation. 
The upper limits, indicated by dashed lines, are caused by the limits of validity of the 
equation, 4 to 1200 K. 

for austenitic stainless steel, SRM 735, from 4 to 1200 K [2]. Calculations 
are performed as for the previous example, and the results are shown in 
Fig. 3 for the same error bands. The size of the allowable temperature 
differences is larger than for iron, as expected, and much larger than those 
used by experimentalists. 

3. THERMAL CONDUCTIVITY INTEGRAL METHOD 

The previous section has demonstrated that relatively large tempera- 
ture differences can be used by the experimenter without introducing 
unduly large errors. As a matter of fact, overall errors may be reduced 
because the measurement of small temperature differences often, in itself, 
leads to large experimental errors. This section describes an alternative 
method of measurement/analysis which totally eliminates the need for any 
temperature difference restrictions, a thermal conductivity integral (TCI) 
method. The analytical method is based on only one assumption, that the 
thermal conductivity to be measured is representable by an integrable 
function of temperature over the temperature range of the measurements. 
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Clearly, this again eliminates from consideration k (T)  functions which are 
discontinuous, such as occur through a phase change. 

First, for simplicity, assume that the actual thermal conductivity can 
be written as 

k(T) = ~ A,T' (6) 
i = 1  

A function linear in the parameters A~ has been chosen, but a nonlinear 
function can also be used so long as it is integrable, either mathematically 
or numerically. Substituting k(T)  from Eq. (6) into Eq. (3) and integrating 
with respect to T yields 

~, Ai(T~ +~ - T(+~)/(i + 1) = - Q A x / A  (7) 
i = 1  

Equation (7) contains only the set of n undetermined parameters (Ai) and 
the experimentally determined set of variables (Q, T2, T1, Ax, and A). 
Thus, from a set of at least n experimental runs over the temperature range 
Tmin to Tma• one can evaluate the A i and, therefore, the original k(T)  
function, Eq. (6), is defined. Although n runs are, in principle, sufficient for 
this process, as in any least squares process, considerably more runs are 
necessary. A personal rule of thumb is to have considerably more than 2n 
runs spaced uniformly over the temperature range Tmi n to Tma X. This rule 
of thumb is, however, strongly dependent on the nature of the function 
k (T)  selected to represent the data. For power series with large n (say 
above 5), careful attention must be given to selecting the number and 
spacing of points and the interpretation of the final results. The method 
allows some simplification of experimental arrangements and instrumenta- 
tion but requires more expertise in data acquisition planning and in 
numerical analysis techniques. 

It is convenient to point out here that Eq. (7), which is applicable to 
one-dimensional heat flow, can readily be extended to include other com- 
mon geometries. Only the right side of Eq. (7) is affected. For a radial heat 
flow configuration, the right side becomes 

Q In r2 
2q, r r I 

For spherical heat flow, the right side of Eq. (7) becomes 

Q ( r 2 -  r~------~ 1 ] 
4~r \ r2r 1 ] 

where r 2 is the radius at T 2 and r 1 is the radius at T l . 



74 Hust and Lankford 

4. APPLICATION OF THIS TCI M E T H O D  

To demonstrate the application of this TCI method, thermal conduc- 
tivity integral data from 2 to 80 K for aluminum were obtained from R. B. 
Roberts (see the paper by R. B. Roberts and R. S. Crisp [3]). Their TCI 
data, Q, T 2, T 1, and A l A x  are given in Table I. Roberts and Crisp 
analyzed these TCI data using a segmented smoothing and derivative 
technique rather than fitting a single k ( T )  function to the entire range. 
Their derived thermal conductivity values are also given in Table I and are 
for the T 2 temperatures. These derived thermal conductivity values along 
with the measured mean values obtained for each run are plotted in Fig. 4. 
There is, of course, a distinct difference between these two sets of values for 
a thermal conductivity curve of this shape. 

Because of the difficulty of representing the shape of low-temperature 
pure metal thermal conductivity curves with a power series, we decided to 
use a rational fraction equation based partly on the results of the theory. 
The equation chosen to fit these data is 

k ( V )  - V 
a + b T  f (8) 

where f = n + m T. 
This equation is nonlinear in the parameters to be determined, and so 

a nonlinear fitting technique was required. In addition, it is mathematically 
nonintegrable and, therefore, numerical integration was performed in solv- 
ing the problem. The computer routine used minimized the sum of the 
squares of the TCI differences between the experimental data and corre- 
sponding values calculated from Eq. (8). The resulting parameters are 

a = 0.08102 

b = 1.301 x 10 -5 

n = 3.06 

m = 0.00426 

Thermal conductivity values calculated from Eq. (8) are shown in Fig. 
4 as the solid line. Although this looks like a respectable fit of the k values 
derived by Roberts and Crisp [3], one must take a closer look to see the 
actual differences. 

Figure 5 illustrates, first, the percentage deviations between the experi- 
mental TCI data, Q A x / A ,  and the calculated TCI values. Second, this 
figure also shows the percentage differences between the thermal condue- 
tivities derived by Roberts and Crisp [3] and the results derived here. Both 
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T2 
(K) 

Table I. TCI Data of Roberts and Crisp [3] (Helium Range Only) 
A x / A  = 2.1549 x 106 m -  1 

i i 

r L Q A x / A  k 
(K) (W. m - l )  (W. m- I  . K - l )  

2.723 
3.060 
3.391 
3.810 
4.249 
4.816 
5.421 
6.022 
6.597 
7.203 
7.725 
8.451 
9.131 
9.774 

10.916 
11.877 
12.410 
13.700 
14.742 
15.371 
16.450 
15.162 
16.485 
18.752 
20.529 
22.510 
25.476 
29.653 
31.876 
34.900 
38.261 
40.817 
45.036 
50.023 
55.883 
63.031 
69.874 
77.810 
83.024 

I t  I t  

2.158 29.01 
2.158 31.71 
2.158 33.88 
2.158 36.64 
2.158 39.26 
2.158 42.59 
2.158 46.11 
2.158 49.50 
2.158 52.68 
2.158 55.90 
2.158 58.54 
2.158 62.15 
2.158 65.56 
2.158 68.43 
2.158 73.13 
2.158 76.74 
2.158 78.54 
2.158 82.46 
2.158 84.26 
2.158 85.16 
2.158 86.28 
4.172 92.34 
4.172 93.44 
4.172 93,41 
4.172 92.72 
4.172 90.92 
4.172 87.28 
4.172 81.09 
4.172 77.63 
4.172 73.08 
4.172 68.26 
4.172 64.86 
4.172 59.74 
4.172 54.49 
4.172 49.27 
4.172 44.04 
4.172 39.94 
4.172 36.08 
4.172 33.87 

It I I t  I I I I I lit 

3354 
3786 
4192 
4688 
5193 
5822 
6470 
7098 
7670 
8245 
8702 
9300 
9807 

10235 
10825 
11113 
11168 
10903 
10495 
10358 
10258 
9821 
9834 
8886 
8067 
7137 
5835 
4229 
3549 
2803 
2168 
1813 
1366 
1007 
719 
488 
395 
391 
422 
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Fig. 4. Thermal conductivity values for aIuminum: ( + )  as derived by Roberts and Crisp [3]; 
( o ) average values from Table I; (solid line) derived in this paper. 
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differences are clearly systematic with seven crossings of the zero line. The 
correlation of the two deviation curves indicates that the method of Roberts 
and Crisp [3] yielded a better fit of their TCI data. Since Eq. (8) does not 
have the capability to oscillate in the above fashion, it can not account for 
these deviations. Assuming that these oscillatory deviations are physically 
real, one could repeat the above process with a power series to represent the 
remaining residuals. 

5. S U M M A R Y  

This paper has shown that for most conventional thermal conductivity 
measurements, relatively large temperature differences may be experimen- 
tally employed with little degradation of uncertainty due to the derivative 
approximation. Only in regions of rapidly changing thermal conductivity, 
primarily near phase transitions, is it essential that the temperature differ- 
ences be small. The paper presents a TCI method of analysis which 
eliminates all analytical restrictions on the temperature difference. The 
method is useful because it allows considerable experimental simplification 
through the addition of some analytical complications. It can be used 
whenever the functional form of the thermal conductivity can be predicted 
in advance. 

A TCI method has some advantages in analyzing data for the presence 
of nonconductive mechanisms, such as radiation and convection. These 
advantages occur because large temperature differences are valid in this 
analysis process while the large differences may simultaneously introduce 
increasingly large nonconductive mechanisms. The presence of these mech- 
anisms often goes undetected except under large temperature difference 
conditions. Examples of such nonconductive mechanisms are radiation 
through partly transparent materials or radiation parallel to a longitudinal 
specimen. 
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